Stacey Deleria Finley, PhD

Title(s)Associate Professor of Biomedical Engineering
AddressDRB 172
University Park Campus
Los Angeles CA 90089-1111
Phone+1 213 740 8788
vCardDownload vCard

    Collapse Biography 
    Collapse Awards and Honors
    2016Keystone Symposia Fellow
    Diverse: Issues in Higher Education2015Emerging Scholar Award
    National Academy of Engineering2014Frontiers in Engineering Education
    University of Southern California2013WiSE Gabilan Assistant Professorship
    Journal Biotechnology and Bioengineering2010Elmer Gaden Jr. Award
    National Institutes of Health2010Ruth L. Kirschstein NRSA Postdoctoral Fellowship
    UNCF/Merck Science Initiative2010Postdoctoral Science Research Fellowship
    National Science Foundation2006Graduate Research Fellowship

    Collapse Overview 
    Collapse Overview
    Dr. Stacey Finley joined the Biomedical Engineering Department at USC in 2013. Dr. Finley received her Bachelor's degree in Chemical Engineering from Florida A & M University in 2004. She pursued graduate studies in Chemical Engineering and received her Ph.D. in 2009 from Northwestern University. While at Northwestern, Dr. Finley was a recipient of the NSF Graduate Research Fellowship and a participant in the NIH Biotechnology Predoctoral Training Program. Following her graduate work, Dr. Finley was a postdoctoral research fellow at Johns Hopkins University School of Medicine. She was awarded postdoctoral fellowships from the NIH National Research Service Award (NRSA) and the UNCF/Merck Science Initiative. She is a member of American Association of Cancer Research (AACR), American Institute of Chemical Engineers (AIChE), Biomedical Engineering Society (BMES), International Society for Computational Biology (ISCB), and the Society of Mathematical Biology (SMB).

    Collapse Research 
    Collapse Research Activities and Funding
    Multiscale systems biology modeling to exploit tumor-stromal metabolic crosstalk in colorectal cancer
    NIH U01CA232137Sep 13, 2018 - Aug 31, 2023
    Role: Principal Investigator
    Predictive model of pro- and anti-angiogenic factors involved in breast cancer
    NIH F32CA154213Sep 15, 2010 - Feb 14, 2013
    Role: Principal Investigator

    Collapse Featured Content 
    Collapse Featured Videos
    Collapse Twitter

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Fund Black scientists. Cell. 2021 02 04; 184(3):561-565. Stevens KR, Masters KS, Imoukhuede PI, Haynes KA, Setton LA, Cosgriff-Hernandez E, Lediju Bell MA, Rangamani P, Sakiyama-Elbert SE, Finley SD, Willits RK, Koppes AN, Chesler NC, Christman KL, Allen JB, Wong JY, El-Samad H, Desai TA, Eniola-Adefeso O. PMID: 33503447.
      View in: PubMed   Mentions: 10     Fields:    Translation:Humans
    2. Multi-scale modeling of macrophage-T cell interactions within the tumor microenvironment. PLoS Comput Biol. 2020 12; 16(12):e1008519. Cess CG, Finley SD. PMID: 33362239.
      View in: PubMed   Mentions: 1     Fields:    Translation:HumansAnimalsCells
    3. An optimal control approach for enhancing natural killer cells' secretion of cytolytic molecules. APL Bioeng. 2020 Dec; 4(4):046107. Makaryan SZ, Finley SD. PMID: 33376936.
      View in: PubMed   Mentions:
    4. Dynamic Regulation of JAK-STAT Signaling Through the Prolactin Receptor Predicted by Computational Modeling. Cell Mol Bioeng. 2021 Feb; 14(1):15-30. Mortlock RD, Georgia SK, Finley SD. PMID: 33633812.
      View in: PubMed   Mentions:
    5. ERK and Akt exhibit distinct signaling responses following stimulation by pro-angiogenic factors. Cell Commun Signal. 2020 07 17; 18(1):114. Song M, Finley SD. PMID: 32680529.
      View in: PubMed   Mentions: 3     Fields:    Translation:HumansAnimalsCells
    6. Enhancing network activation in natural killer cells: predictions from in silico modeling. Integr Biol (Camb). 2020 05 21; 12(5):109-121. Makaryan SZ, Finley SD. PMID: 32409824.
      View in: PubMed   Mentions: 3     Fields:    Translation:HumansCells
    7. Mathematical Model Predicts Effective Strategies to Inhibit VEGF-eNOS Signaling. J Clin Med. 2020 Apr 26; 9(5). Wu Q, Finley SD. PMID: 32357492.
      View in: PubMed   Mentions:
    8. ERK Activation in CAR T Cells Is Amplified by CD28-Mediated Increase in CD3? Phosphorylation. iScience. 2020 Apr 24; 23(4):101023. Rohrs JA, Siegler EL, Wang P, Finley SD. PMID: 32325413.
      View in: PubMed   Mentions:
    9. Modeling immune cell behavior across scales in cancer. Wiley Interdiscip Rev Syst Biol Med. 2020 07; 12(4):e1484. Makaryan SZ, Cess CG, Finley SD. PMID: 32129950.
      View in: PubMed   Mentions: 6     Fields:    
    10. Data-driven analysis of a mechanistic model of CAR T cell signaling predicts effects of cell-to-cell heterogeneity. J Theor Biol. 2020 03 21; 489:110125. Cess CG, Finley SD. PMID: 31866395.
      View in: PubMed   Mentions: 3     Fields:    Translation:HumansCells
    11. Exploring the Extracellular Regulation of the Tumor Angiogenic Interaction Network Using a Systems Biology Model. Front Physiol. 2019; 10:823. Li D, Finley SD. PMID: 31379588.
      View in: PubMed   Mentions:
    12. Integrative Approaches to Cancer Immunotherapy. Trends Cancer. 2019 07; 5(7):400-410. Szeto GL, Finley SD. PMID: 31311655.
      View in: PubMed   Mentions: 9     Fields:    Translation:Humans
    13. The 2019 mathematical oncology roadmap. Phys Biol. 2019 06 19; 16(4):041005. Rockne RC, Hawkins-Daarud A, Swanson KR, Sluka JP, Glazier JA, Macklin P, Hormuth DA, Jarrett AM, Lima EABF, Tinsley Oden J, Biros G, Yankeelov TE, Curtius K, Al Bakir I, Wodarz D, Komarova N, Aparicio L, Bordyuh M, Rabadan R, Finley SD, Enderling H, Caudell J, Moros EG, Anderson ARA, Gatenby RA, Kaznatcheev A, Jeavons P, Krishnan N, Pelesko J, Wadhwa RR, Yoon N, Nichol D, Marusyk A, Hinczewski M, Scott JG. PMID: 30991381.
      View in: PubMed   Mentions: 25     Fields:    Translation:Humans
    14. Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model. PLoS Comput Biol. 2019 06; 15(6):e1007053. Roy M, Finley SD. PMID: 31185009.
      View in: PubMed   Mentions: 4     Fields:    Translation:HumansCells
    15. Understanding the Dynamics of T-Cell Activation in Health and Disease Through the Lens of Computational Modeling. JCO Clin Cancer Inform. 2019 01; 3:1-8. Rohrs JA, Wang P, Finley SD. PMID: 30689404.
      View in: PubMed   Mentions: 9     Fields:    Translation:HumansAnimalsCells
    16. Mechanistic insight into activation of MAPK signaling by pro-angiogenic factors. BMC Syst Biol. 2018 12 27; 12(1):145. Song M, Finley SD. PMID: 30591051.
      View in: PubMed   Mentions: 10     Fields:    Translation:Cells
    17. Computational Model of Chimeric Antigen Receptors Explains Site-Specific Phosphorylation Kinetics. Biophys J. 2018 09 18; 115(6):1116-1129. Rohrs JA, Zheng D, Graham NA, Wang P, Finley SD. PMID: 30197180.
      View in: PubMed   Mentions: 10     Fields:    Translation:Cells
    18. In silico mouse study identifies tumour growth kinetics as biomarkers for the outcome of anti-angiogenic treatment. J R Soc Interface. 2018 08; 15(145). Wu Q, Arnheim AD, Finley SD. PMID: 30135261.
      View in: PubMed   Mentions: 4     Fields:    Translation:Animals
    19. The impact of tumor receptor heterogeneity on the response to anti-angiogenic cancer treatment. Integr Biol (Camb). 2018 04 23; 10(4):253-269. Li D, Finley SD. PMID: 29623971.
      View in: PubMed   Mentions: 6     Fields:    Translation:Humans
    20. Mechanistic modeling quantifies the influence of tumor growth kinetics on the response to anti-angiogenic treatment. PLoS Comput Biol. 2017 12; 13(12):e1005874. Gaddy TD, Wu Q, Arnheim AD, Finley SD. PMID: 29267273.
      View in: PubMed   Mentions: 6     Fields:    Translation:Humans
    21. Predictive model identifies strategies to enhance TSP1-mediated apoptosis signaling. Cell Commun Signal. 2017 Dec 19; 15(1):53. Wu Q, Finley SD. PMID: 29258506.
      View in: PubMed   Mentions: 6     Fields:    Translation:HumansCells
    22. Computational Model Predicts the Effects of Targeting Cellular Metabolism in Pancreatic Cancer. Front Physiol. 2017; 8:217. Roy M, Finley SD. PMID: 28446878.
      View in: PubMed   Mentions:
    23. Monitoring Severity of Multiple Organ Dysfunction Syndrome: New Technologies. Pediatr Crit Care Med. 2017 Mar; 18(3_suppl Suppl 1):S24-S31. Typpo KV, Wong HR, Finley SD, Daniels RC, Seely AJ, Lacroix J. PMID: 28248831.
      View in: PubMed   Mentions: 5     Fields:    Translation:Humans
    24. A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF165b in peripheral arterial disease in human and mouse. Sci Rep. 2016 11 17; 6:37030. Chu LH, Ganta VC, Choi MH, Chen G, Finley SD, Annex BH, Popel AS. PMID: 27853189.
      View in: PubMed   Mentions: 5     Fields:    Translation:HumansAnimalsCells
    25. Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue. NPJ Syst Biol Appl. 2016; 2. Rohrs JA, Sulistio CD, Finley SD. PMID: 28713587.
      View in: PubMed   Mentions: 11     Fields:    
    26. Predictive Model of Lymphocyte-Specific Protein Tyrosine Kinase (LCK) Autoregulation. Cell Mol Bioeng. 2016; 9:351-367. Rohrs JA, Wang P, Finley SD. PMID: 27547268.
      View in: PubMed   Mentions:
    27. A cancer treatment based on synergy between anti-angiogenic and immune cell therapies. J Theor Biol. 2016 Apr 07; 394:197-211. Soto-Ortiz L, Finley SD. PMID: 26826488.
      View in: PubMed   Mentions: 5     Fields:    Translation:HumansCells
    28. Pharmacokinetics of Anti-VEGF Agent Aflibercept in Cancer Predicted by Data-Driven, Molecular-Detailed Model. CPT Pharmacometrics Syst Pharmacol. 2015 Nov; 4(11):641-9. Finley SD, Angelikopoulos P, Koumoutsakos P, Popel AS. PMID: 26783500.
      View in: PubMed   Mentions: 9     Fields:    
    29. Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug Discov Today. 2015 Feb; 20(2):187-97. Finley SD, Chu LH, Popel AS. PMID: 25286370.
      View in: PubMed   Mentions: 26     Fields:    Translation:Humans
    30. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med. 2014 Aug; 18(8):1491-508. Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. PMID: 24237862.
      View in: PubMed   Mentions: 46     Fields:    Translation:HumansAnimals
    31. Compartment model predicts VEGF secretion and investigates the effects of VEGF trap in tumor-bearing mice. Front Oncol. 2013; 3:196. Finley SD, Dhar M, Popel AS. PMID: 23908970.
      View in: PubMed   Mentions:
    32. Effect of tumor microenvironment on tumor VEGF during anti-VEGF treatment: systems biology predictions. J Natl Cancer Inst. 2013 Jun 05; 105(11):802-11. Finley SD, Popel AS. PMID: 23670728.
      View in: PubMed   Mentions: 41     Fields:    Translation:HumansAnimals
    33. Predicting the effects of anti-angiogenic agents targeting specific VEGF isoforms. AAPS J. 2012 Sep; 14(3):500-9. Finley SD, Popel AS. PMID: 22547351.
      View in: PubMed   Mentions: 27     Fields:    Translation:HumansCells
    34. Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies. BMC Syst Biol. 2011 Nov 21; 5:193. Finley SD, Engel-Stefanini MO, Imoukhuede PI, Popel AS. PMID: 22104283.
      View in: PubMed   Mentions: 28     Fields:    Translation:HumansAnimalsCells
    35. A two-compartment model of VEGF distribution in the mouse. PLoS One. 2011; 6(11):e27514. Yen P, Finley SD, Engel-Stefanini MO, Popel AS. PMID: 22087332.
      View in: PubMed   Mentions: 20     Fields:    Translation:AnimalsCells
    36. Timescale analysis of rule-based biochemical reaction networks. Biotechnol Prog. 2012 Jan-Feb; 28(1):33-44. Klinke DJ, Finley SD. PMID: 21954150.
      View in: PubMed   Mentions: 10     Fields:    Translation:Cells
    37. Inferring relevant control mechanisms for interleukin-12 signaling in naïve CD4+ T cells. Immunol Cell Biol. 2011 Jan; 89(1):100-10. Finley SD, Gupta D, Cheng N, Klinke DJ. PMID: 20479776.
      View in: PubMed   Mentions: 14     Fields:    Translation:AnimalsCells
    38. In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Syst Biol. 2010 Feb 02; 4:7. Finley SD, Broadbelt LJ, Hatzimanikatis V. PMID: 20122273.
      View in: PubMed   Mentions: 8     Fields:    Translation:CellsPHPublic Health
    39. Computational framework for predictive biodegradation. Biotechnol Bioeng. 2009 Dec 15; 104(6):1086-97. Finley SD, Broadbelt LJ, Hatzimanikatis V. PMID: 19650084.
      View in: PubMed   Mentions: 23     Fields:    Translation:PHPublic Health
    40. Thermodynamic analysis of biodegradation pathways. Biotechnol Bioeng. 2009 Jun 15; 103(3):532-41. Finley SD, Broadbelt LJ, Hatzimanikatis V. PMID: 19288443.
      View in: PubMed   Mentions: 14     Fields: