Christopher A. Shera, PhD

Title(s)Professor of Otolaryngology-Head and Neck Surgery
SchoolKeck School of Medicine of Usc
Phone+1 323 865 1685
vCardDownload vCard
    Other Positions
    Title(s)Co-Division Chief


    Collapse Overview 
    Collapse Overview
    Lab Site:

    http://apg.mechanicsofhearing.org


    The peripheral auditory system transforms air-borne pressure waves into neural impulses that are interpreted by the brain as sound and speech. The cochlea of the inner ear is a snail-shaped electro-hydromechanical signal amplifier, frequency analyzer, and transducer with an astounding constellation of performance characteristics, including sensitivity to sub-atomic displacements with microsecond mechanical response times; wideband operation spanning three orders-of-magnitude in frequency; an input dynamic range of 120 dB, corresponding to a million-million-fold change in signal energy; useful operation even at signal powers 100 times smaller than the background noise; and ultra-low power consumption (15 µW). All of this is achieved not with the latest silicon technology or by exploiting the power of quantum computers — neither has yet approached the performance of the ear — but by self-maintaining biological tissue, most of which is salty water. How does the ear do it?

    The Auditory Physics Group studies how the ear amplifies, analyzes, and creates sound. The goal is not only to understand how the cochlea achieves its astounding sensitivity and dynamic range but to use that knowledge to enhance the power of noninvasive probes of peripheral auditory function (e.g., otoacoustic emissions). Our approach involves a strong, quantitative interplay between theoretical modeling studies and physiological measurements. Ongoing work in the lab focuses on models of cochlear amplification, mechanisms of OAE generation, middle-ear transmission, and comparative studies of cochlear mechanics.

    Collapse Research 
    Collapse Research Activities and Funding
    Advanced Detection and Differential Diagnosis of Hearing Loss Using Otoacoustic Emissions
    NIH R01DC018307Sep 1, 2020 - Aug 31, 2025
    Role: Co-Principal Investigator
    Capacitive Pressure/Velocity Probe for Acoustic Measurements in the Human Ear Canal
    NIH R01DC017720Mar 2, 2019 - Feb 29, 2024
    Role: Co-Principal Investigator
    Otoacoustic Emissions: Evoking the Future
    NIH R13DC016825Sep 19, 2017 - Aug 31, 2018
    Role: Principal Investigator
    11th International Mechanics of Hearing Workshop
    NIH R13DC010930Aug 1, 2010 - Jul 31, 2011
    Role: Principal Investigator
    Training in Hearing and Communication Neuroscience
    NIH T32DC009975Jul 1, 2009 - Jun 30, 2025
    Role: Principal Investigator
    Understanding Otoacoustic Emissions
    NIH R01DC003687Jan 1, 1999 - Mar 31, 2024
    Role: Principal Investigator
    MEASURING THE GAIN OF THE COCHLEAR AMPLIFIER
    NIH R03DC003494Sep 1, 1997 - Aug 31, 2000
    Role: Principal Investigator
    MEASURING THE GAIN OF THE COCHLEAR AMPLIFIER
    NIH F32DC000108Nov 1, 1994
    Role: Principal Investigator

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. The Shape of Noise to Come: Signal vs. Noise Amplification in the Active Cochlea. AIP Conf Proc. 2024 Feb 27; 3062(1). Altoè A, Shera CA. PMID: 38516505; PMCID: PMC10956509.
      View in: PubMed   Mentions:
    2. Fluid Focusing Contributes to the BM Vibration Amplification by Boosting the Pressure. AIP Conf Proc. 2024 Feb 27; 3062(1). Sisto R, Belardinelli D, Altoè A, Shera CA, Moleti A. PMID: 38516506; PMCID: PMC10956525.
      View in: PubMed   Mentions:
    3. Similar Tuning of Distortion-Product Otoacoustic Emission Ratio Functions and Cochlear Vibrations in Mice. AIP Conf Proc. 2024 Feb 27; 3062(1). Dewey JB, Shera CA. PMID: 38516507; PMCID: PMC10956552.
      View in: PubMed   Mentions:
    4. Does Endolymphatic Hydrops Shift the Cochlear Tonotopic Map? AIP Conf Proc. 2024 Feb 27; 3062(1). Stiepan S, Shera CA, Abdala C. PMID: 38576895; PMCID: PMC10994190.
      View in: PubMed   Mentions:
    5. Swept Along: Measuring Otoacoustic Emissions Using Continuously Varying Stimuli. J Assoc Res Otolaryngol. 2024 Feb 26. Shera CA. PMID: 38409555.
      View in: PubMed   Mentions:    Fields:    
    6. Noise within: Signal-to-noise enhancement via coherent wave amplification in the mammalian cochlea. Phys Rev Res. 2024 Jan-Mar; 6(1). Altoè A, Shera CA. PMID: 38525155; PMCID: PMC10959500.
      View in: PubMed   Mentions:
    7. Parametric information about eye movements is sent to the ears. Proc Natl Acad Sci U S A. 2023 Nov 28; 120(48):e2303562120. Lovich SN, King CD, Murphy DLK, Landrum RE, Shera CA, Groh JM. PMID: 37988462; PMCID: PMC10691342.
      View in: PubMed   Mentions:    Fields:    
    8. The Noise Within: Signal-to-Noise Enhancement via Coherent Wave Amplification in the Mammalian Cochlea. ArXiv. 2023 Nov 15. Altoè A, Shera CA. PMID: 37502623; PMCID: PMC10370218.
      View in: PubMed   Mentions:
    9. Individual similarities and differences in eye-movement-related eardrum oscillations (EMREOs). Hear Res. 2023 Dec; 440:108899. King CD, Lovich SN, Murphy DL, Landrum R, Kaylie D, Shera CA, Groh JM. PMID: 37979436.
      View in: PubMed   Mentions: 1     Fields:    Translation:Humans
    10. Otoacoustic emissions reveal the micromechanical role of organ-of-Corti cytoarchitecture in cochlear amplification. Proc Natl Acad Sci U S A. 2023 10 10; 120(41):e2305921120. Shera CA, Altoè A. PMID: 37796989; PMCID: PMC10576130.
      View in: PubMed   Mentions: 2     Fields:    
    11. Conserved features of eye movement related eardrum oscillations (EMREOs) across humans and monkeys. Philos Trans R Soc Lond B Biol Sci. 2023 09 25; 378(1886):20220340. Lovich SN, King CD, Murphy DLK, Abbasi H, Bruns P, Shera CA, Groh JM. PMID: 37545299; PMCID: PMC10404921.
      View in: PubMed   Mentions: 2     Fields:    Translation:Humans
    12. Individual similarities and differences in eye-movement-related eardrum oscillations (EMREOs). bioRxiv. 2023 Aug 06. King CD, Lovich SN, Murphy DLK, Landrum R, Kaylie D, Shera CA, Groh JM. PMID: 36945521; PMCID: PMC10028987.
      View in: PubMed   Mentions:
    13. Characterizing a Joint Reflection-Distortion OAE Profile in Humans With Endolymphatic Hydrops. Ear Hear. 2023 Nov-Dec 01; 44(6):1437-1450. Stiepan S, Shera CA, Abdala C. PMID: 37450653; PMCID: PMC10593104.
      View in: PubMed   Mentions: 1     Fields:    Translation:Humans
    14. Conserved features of eye movement related eardrum oscillations (EMREOs) across humans and monkeys. bioRxiv. 2023 May 22. Lovich SN, King CD, Murphy DLK, Abbasi H, Bruns P, Shera CA, Groh J. PMID: 36945629; PMCID: PMC10028923.
      View in: PubMed   Mentions:
    15. Bandpass Shape of Distortion-Product Otoacoustic Emission Ratio Functions Reflects Cochlear Frequency Tuning in Normal-Hearing Mice. J Assoc Res Otolaryngol. 2023 06; 24(3):305-324. Dewey JB, Shera CA. PMID: 37072566; PMCID: PMC10335997.
      View in: PubMed   Mentions: 1     Fields:    Translation:AnimalsCells
    16. The Long Outer-Hair-Cell RC Time Constant: A Feature, Not a Bug, of the Mammalian Cochlea. J Assoc Res Otolaryngol. 2023 04; 24(2):129-145. Altoè A, Shera CA. PMID: 36725778; PMCID: PMC10121995.
      View in: PubMed   Mentions:    Fields:    Translation:AnimalsCells
    17. The Remarkable Outer Hair Cell: Proceedings of a Symposium in Honour of W. E. Brownell. J Assoc Res Otolaryngol. 2023 04; 24(2):117-127. Ashmore JF, Oghalai JS, Dewey JB, Olson ES, Strimbu CE, Wang Y, Shera CA, Altoè A, Abdala C, Elgoyhen AB, Eatock RA, Raphael RM. PMID: 36648734; PMCID: PMC10121982.
      View in: PubMed   Mentions: 2     Fields:    Translation:AnimalsCells
    18. Crucial 3-D viscous hydrodynamic contributions to the theoretical modeling of the cochlear response. J Acoust Soc Am. 2023 01; 153(1):77. Sisto R, Belardinelli D, Altoè A, Shera CA, Moleti A. PMID: 36732225; PMCID: PMC10167633.
      View in: PubMed   Mentions: 2     Fields:    
    19. Overturning the mechanisms of cochlear amplification via area deformations of the organ of Corti. J Acoust Soc Am. 2022 10; 152(4):2227. Altoè A, Dewey JB, Charaziak KK, Oghalai JS, Shera CA. PMID: 36319240; PMCID: PMC9578757.
      View in: PubMed   Mentions: 4     Fields:    Translation:AnimalsCells
    20. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults. J Assoc Res Otolaryngol. 2022 Oct; 23(5):647-664. Abdala C, Luo P, Shera CA. PMID: 35804277; PMCID: PMC9613820.
      View in: PubMed   Mentions: 5     Fields:    Translation:HumansCells
    21. Interplay between traveling wave propagation and amplification at the apex of the mouse cochlea. Biophys J. 2022 08 02; 121(15):2940-2951. Nankali A, Shera CA, Applegate BE, Oghalai JS. PMID: 35778839; PMCID: PMC9388393.
      View in: PubMed   Mentions: 2     Fields:    Translation:AnimalsCells
    22. WHAT MAKES HUMAN HEARING SPECIAL? Front Young Minds. 2022; 10. Sumner CJ, Bergevin C, Oxenham AJ, Shera CA. PMID: 37465203; PMCID: PMC10353771.
      View in: PubMed   Mentions:
    23. Auditory filter shapes derived from forward and simultaneous masking at low frequencies: Implications for human cochlear tuning. Hear Res. 2022 07; 420:108500. Leschke J, Rodriguez Orellana G, Shera CA, Oxenham AJ. PMID: 35405591; PMCID: PMC9167757.
      View in: PubMed   Mentions: 1     Fields:    Translation:HumansPHPublic Health
    24. Whistling While it Works: Spontaneous Otoacoustic Emissions and the Cochlear Amplifier. J Assoc Res Otolaryngol. 2022 02; 23(1):17-25. Shera CA. PMID: 34981262; PMCID: PMC8782959.
      View in: PubMed   Mentions: 6     Fields:    
    25. Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo. Proc Natl Acad Sci U S A. 2021 10 26; 118(43). Dewey JB, Altoè A, Shera CA, Applegate BE, Oghalai JS. PMID: 34686590; PMCID: PMC8639341.
      View in: PubMed   Mentions: 28     Fields:    Translation:AnimalsCells
    26. The Elusive Cochlear Filter: Wave Origin of Cochlear Cross-Frequency Masking. J Assoc Res Otolaryngol. 2021 12; 22(6):623-640. Altoè A, Charaziak KK, Dewey JB, Moleti A, Sisto R, Oghalai JS, Shera CA. PMID: 34677710; PMCID: PMC8599594.
      View in: PubMed   Mentions: 3     Fields:    Translation:Animals
    27. Reflection-Source Emissions Evoked with Clicks and Frequency Sweeps: Comparisons Across Levels. J Assoc Res Otolaryngol. 2021 12; 22(6):641-658. Charaziak KK, Shera CA. PMID: 34606020; PMCID: PMC8599565.
      View in: PubMed   Mentions: 3     Fields:    Translation:Animals
    28. Extended low-frequency phase of the distortion-product otoacoustic emission in human newborns. JASA Express Lett. 2021 Jan; 1(1):014404. Christensen AT, Shera CA, Abdala C. PMID: 33589887; PMCID: PMC7850017.
      View in: PubMed   Mentions:    Fields:    
    29. The cochlear ear horn: geometric origin of tonotopic variations in auditory signal processing. Sci Rep. 2020 11 25; 10(1):20528. Altoè A, Shera CA. PMID: 33239701; PMCID: PMC7689495.
      View in: PubMed   Mentions: 13     Fields:    Translation:Animals
    30. A cochlea with three parts? Evidence from otoacoustic emission phase in humans. J Acoust Soc Am. 2020 09; 148(3):1585. Christensen AT, Abdala C, Shera CA. PMID: 33003861; PMCID: PMC7789857.
      View in: PubMed   Mentions: 3     Fields:    Translation:Humans
    31. Asymmetry and Microstructure of Temporal-Suppression Patterns in Basilar-Membrane Responses to Clicks: Relation to Tonal Suppression and Traveling-Wave Dispersion. J Assoc Res Otolaryngol. 2020 04; 21(2):151-170. Charaziak KK, Dong W, Altoè A, Shera CA. PMID: 32166602; PMCID: PMC7270478.
      View in: PubMed   Mentions: 7     Fields:    Translation:Animals
    32. Nonlinear cochlear mechanics without direct vibration-amplification feedback. Phys Rev Res. 2020 Feb-Apr; 2(1). Altoè A, Shera CA. PMID: 33403361; PMCID: PMC7781069.
      View in: PubMed   Mentions: 13  
    33. Variable-rate frequency sweeps and their application to the measurement of otoacoustic emissions. J Acoust Soc Am. 2019 11; 146(5):3457. Christensen AT, Abdala C, Shera CA. PMID: 31795700; PMCID: PMC6872461.
      View in: PubMed   Mentions: 3     Fields:    Translation:Humans
    34. Effects of Forward- and Emitted-Pressure Calibrations on the Variability of Otoacoustic Emission Measurements Across Repeated Probe Fits. Ear Hear. 2019 Nov/Dec; 40(6):1345-1358. Maxim T, Shera CA, Charaziak KK, Abdala C. PMID: 30882535; PMCID: PMC6744999.
      View in: PubMed   Mentions: 4     Fields:    Translation:Humans
    35. Constraints imposed by zero-crossing invariance on cochlear models with two mechanical degrees of freedom. J Acoust Soc Am. 2019 09; 146(3):1685. Sisto R, Shera CA, Altoè A, Moleti A. PMID: 31590512; PMCID: PMC6756920.
      View in: PubMed   Mentions: 6     Fields:    Translation:Humans
    36. Morphological Immaturity of the Neonatal Organ of Corti and Associated Structures in Humans. J Assoc Res Otolaryngol. 2019 10; 20(5):461-474. Meenderink SWF, Shera CA, Valero MD, Liberman MC, Abdala C. PMID: 31407107; PMCID: PMC6797686.
      View in: PubMed   Mentions: 12     Fields:    Translation:Humans
    37. On the calculation of reflectance in non-uniform ear canals. J Acoust Soc Am. 2019 08; 146(2):1464. Nørgaard KR, Charaziak KK, Shera CA. PMID: 31472574; PMCID: PMC6713557.
      View in: PubMed   Mentions: 1     Fields:    Translation:Humans
    38. A comparison of ear-canal-reflectance measurement methods in an ear simulator. J Acoust Soc Am. 2019 08; 146(2):1350. Nørgaard KR, Charaziak KK, Shera CA. PMID: 31472530; PMCID: PMC6707811.
      View in: PubMed   Mentions: 5     Fields:    Translation:Humans
    39. Cochlear Frequency Tuning and Otoacoustic Emissions. Cold Spring Harb Perspect Med. 2019 02 01; 9(2). Shera CA, Charaziak KK. PMID: 30037987; PMCID: PMC6360871.
      View in: PubMed   Mentions: 9     Fields:    Translation:HumansAnimals
    40. An analytic physically motivated model of the mammalian cochlea. J Acoust Soc Am. 2019 01; 145(1):45. Alkhairy SA, Shera CA. PMID: 30710944; PMCID: PMC6320697.
      View in: PubMed   Mentions: 2     Fields:    Translation:Animals
    41. Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans. Proc Natl Acad Sci U S A. 2018 10 30; 115(44):11322-11326. Sumner CJ, Wells TT, Bergevin C, Sollini J, Kreft HA, Palmer AR, Oxenham AJ, Shera CA. PMID: 30322908; PMCID: PMC6217411.
      View in: PubMed   Mentions: 33     Fields:    Translation:HumansAnimals
    42. Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms. J Assoc Res Otolaryngol. 2018 08; 19(4):401-419. Charaziak KK, Siegel JH, Shera CA. PMID: 30014309; PMCID: PMC6081886.
      View in: PubMed   Mentions: 2     Fields:    Translation:Animals
    43. Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging. J Assoc Res Otolaryngol. 2018 10; 19(5):493-510. Abdala C, Ortmann AJ, Shera CA. PMID: 29968098; PMCID: PMC6226410.
      View in: PubMed   Mentions: 14     Fields:    Translation:Humans
    44. Temporal Suppression of Clicked-Evoked Otoacoustic Emissions and Basilar-Membrane Motion in Gerbils. AIP Conf Proc. 2018; 1965(1). Charaziak KK, Dong W, Shera CA. PMID: 30057432; PMCID: PMC6063374.
      View in: PubMed   Mentions: 1  
    45. Probing Apical-Basal Differences in the Human Cochlea Using Distortion-Product Otoacoustic Emission Phase. AIP Conf Proc. 2018 May 31; 1965(1). Christensen AT, Abdala C, Shera CA. PMID: 30089933; PMCID: PMC6078425.
      View in: PubMed   Mentions: 2  
    46. Introducing Causality Violation for Improved DPOAE Component Unmixing. AIP Conf Proc. 2018 May 31; 1965(1). Moleti A, Sisto R, Shera CA. PMID: 30089934; PMCID: PMC6078433.
      View in: PubMed   Mentions:
    47. The eardrums move when the eyes move: A multisensory effect on the mechanics of hearing. Proc Natl Acad Sci U S A. 2018 02 06; 115(6):E1309-E1318. Gruters KG, Murphy DLK, Jenson CD, Smith DW, Shera CA, Groh JM. PMID: 29363603; PMCID: PMC5819440.
      View in: PubMed   Mentions: 17     Fields:    Translation:HumansAnimals
    48. Swept-tone stimulus-frequency otoacoustic emissions: Normative data and methodological considerations. J Acoust Soc Am. 2018 01; 143(1):181. Abdala C, Guardia YC, Shera CA. PMID: 29390734; PMCID: PMC5770274.
      View in: PubMed   Mentions: 10     Fields:    Translation:Humans
    49. Negative-delay sources in distortion product otoacoustic emissions. Hear Res. 2018 03; 360:25-30. Sisto R, Shera CA, Moleti A. PMID: 29287918; PMCID: PMC5834380.
      View in: PubMed   Mentions:    Fields:    Translation:Humans
    50. Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping? J Acoust Soc Am. 2017 12; 142(6):3510. Altoè A, Charaziak KK, Shera CA. PMID: 29289066; PMCID: PMC5726976.
      View in: PubMed   Mentions: 6     Fields:    Translation:HumansCells
    51. Using Cochlear Microphonic Potentials to Localize Peripheral Hearing Loss. Front Neurosci. 2017; 11:169. Charaziak KK, Shera CA, Siegel JH. PMID: 28420953; PMCID: PMC5378797.
      View in: PubMed   Mentions: 4  
    52. Characterizing spontaneous otoacoustic emissions across the human lifespan. J Acoust Soc Am. 2017 03; 141(3):1874. Abdala C, Luo P, Shera CA. PMID: 28372113; PMCID: PMC5848845.
      View in: PubMed   Mentions: 4     Fields:    Translation:Humans
    53. Compensating for ear-canal acoustics when measuring otoacoustic emissions. J Acoust Soc Am. 2017 01; 141(1):515. Charaziak KK, Shera CA. PMID: 28147590; PMCID: PMC5848844.
      View in: PubMed   Mentions: 24     Fields:    Translation:Humans
    54. Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones. J Acoust Soc Am. 2016 08; 140(2):936. Shera CA, Abdala C. PMID: 27586726; PMCID: PMC5392090.
      View in: PubMed   Mentions: 5     Fields:    Translation:Humans
    55. Relating the Variability of Tone-Burst Otoacoustic Emission and Auditory Brainstem Response Latencies to the Underlying Cochlear Mechanics. AIP Conf Proc. 2015 Dec 31; 1703. Verhulst S, Shera CA. PMID: 27175040; PMCID: PMC4862599.
      View in: PubMed   Mentions: 2  
    56. Increasing Computational Efficiency of Cochlear Models Using Boundary Layers. AIP Conf Proc. 2015 Dec 31; 1703. Alkhairy SA, Shera CA. PMID: 27175041; PMCID: PMC4862608.
      View in: PubMed   Mentions:
    57. Optimizing swept-tone protocols for recording distortion-product otoacoustic emissions in adults and newborns. J Acoust Soc Am. 2015 Dec; 138(6):3785-99. Abdala C, Luo P, Shera CA. PMID: 26723333; PMCID: PMC4691260.
      View in: PubMed   Mentions: 21     Fields:    Translation:HumansPHPublic Health
    58. Iterated intracochlear reflection shapes the envelopes of basilar-membrane click responses. J Acoust Soc Am. 2015 Dec; 138(6):3717-22. Shera CA. PMID: 26723327; PMCID: PMC5392059.
      View in: PubMed   Mentions: 2     Fields:    Translation:AnimalsCells
    59. Functional modeling of the human auditory brainstem response to broadband stimulation. J Acoust Soc Am. 2015 Sep; 138(3):1637-59. Verhulst S, Bharadwaj HM, Mehraei G, Shera CA, Shinn-Cunningham BG. PMID: 26428802; PMCID: PMC4592442.
      View in: PubMed   Mentions: 14     Fields:    Translation:Humans
    60. The spiral staircase: tonotopic microstructure and cochlear tuning. J Neurosci. 2015 Mar 18; 35(11):4683-90. Shera CA. PMID: 25788685; PMCID: PMC4363394.
      View in: PubMed   Mentions: 10     Fields:    Translation:Animals
    61. On the spatial distribution of the reflection sources of different latency components of otoacoustic emissions. J Acoust Soc Am. 2015 Feb; 137(2):768-76. Sisto R, Moleti A, Shera CA. PMID: 25698011; PMCID: PMC4336253.
      View in: PubMed   Mentions: 13     Fields:    Translation:Humans
    62. On the method of lumens. J Acoust Soc Am. 2014 Dec; 136(6):3126. Shera CA. PMID: 25480060; PMCID: PMC4281039.
      View in: PubMed   Mentions:    Fields:    Translation:Animals
    63. Otoacoustic-emission-based medial-olivocochlear reflex assays for humans. J Acoust Soc Am. 2014 Nov; 136(5):2697-713. Marshall L, Lapsley Miller JA, Guinan JJ, Shera CA, Reed CM, Perez ZD, Delhorne LA, Boege P. PMID: 25373970; PMCID: PMC5392105.
      View in: PubMed   Mentions: 20     Fields:    Translation:HumansCells
    64. Increased contralateral suppression of otoacoustic emissions indicates a hyperresponsive medial olivocochlear system in humans with tinnitus and hyperacusis. J Neurophysiol. 2014 Dec 15; 112(12):3197-208. Knudson IM, Shera CA, Melcher JR. PMID: 25231612; PMCID: PMC4269714.
      View in: PubMed   Mentions: 34     Fields:    Translation:HumansPHPublic Health
    65. Macromechanics of Hearing: The Unknown Known. AIP Conf Proc. 2014 Jun; 1703. Shera CA. PMID: 27630377; PMCID: PMC5019571.
      View in: PubMed   Mentions:
    66. Distortion-product otoacoustic emission reflection-component delays and cochlear tuning: estimates from across the human lifespan. J Acoust Soc Am. 2014 Apr; 135(4):1950-8. Abdala C, Guérit F, Luo P, Shera CA. PMID: 25234993; PMCID: PMC4167749.
      View in: PubMed   Mentions: 5     Fields:    Translation:HumansPHPublic Health
    67. Measuring stimulus-frequency otoacoustic emissions using swept tones. J Acoust Soc Am. 2013 Jul; 134(1):356-68. Kalluri R, Shera CA. PMID: 23862813; PMCID: PMC3732205.
      View in: PubMed   Mentions: 33     Fields:    Translation:Humans
    68. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves. J Acoust Soc Am. 2013 Apr; 133(4):2224-39. Shera CA, Cooper NP. PMID: 23556591; PMCID: PMC4109360.
      View in: PubMed   Mentions: 21     Fields:    Translation:AnimalsCells
    69. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. J Acoust Soc Am. 2012 Dec; 132(6):3842-8. Verhulst S, Dau T, Shera CA. PMID: 23231114; PMCID: PMC3528681.
      View in: PubMed   Mentions: 22     Fields:    Translation:HumansCells
    70. Obtaining reliable phase-gradient delays from otoacoustic emission data. J Acoust Soc Am. 2012 Aug; 132(2):927-43. Shera CA, Bergevin C. PMID: 22894215; PMCID: PMC3427360.
      View in: PubMed   Mentions: 25     Fields:    Translation:HumansCells
    71. The cochlea as a smart structure. Smart Mater Struct. 2012 Jun; 21(6):64001. Elliott SJ, Shera CA. PMID: 23148128; PMCID: PMC3494087.
      View in: PubMed   Mentions: 8  
    72. Probing cochlear tuning and tonotopy in the tiger using otoacoustic emissions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2012 Aug; 198(8):617-24. Bergevin C, Walsh EJ, McGee J, Shera CA. PMID: 22645048; PMCID: PMC3493156.
      View in: PubMed   Mentions: 4     Fields:    Translation:Animals
    73. Reflectance of acoustic horns and solution of the inverse problem. J Acoust Soc Am. 2012 Mar; 131(3):1863-73. Rasetshwane DM, Neely ST, Allen JB, Shera CA. PMID: 22423684; PMCID: PMC3316681.
      View in: PubMed   Mentions: 5     Fields:    
    74. Can a Static Nonlinearity Account for the Dynamics of Otoacoustic Emission Suppression? AIP Conf Proc. 2011 Nov; 1403(1):257-263. Verhulst S, Shera CA, Harte JM, Dau T. PMID: 25284908; PMCID: PMC4181367.
      View in: PubMed   Mentions: 4  
    75. Tracing Distortion Product (DP) Waves in a Cochlear Model. AIP Conf Proc. 2011 Nov; 1403(1):557-562. de Boer E, Shera CA, Nuttall AL. PMID: 25284909; PMCID: PMC4181363.
      View in: PubMed   Mentions: 2  
    76. Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proc Natl Acad Sci U S A. 2011 Oct 18; 108(42):17516-20. Joris PX, Bergevin C, Kalluri R, Mc Laughlin M, Michelet P, van der Heijden M, Shera CA. PMID: 21987783; PMCID: PMC3198376.
      View in: PubMed   Mentions: 67     Fields:    Translation:HumansAnimals
    77. On cochlear impedances and the miscomputation of power gain. J Assoc Res Otolaryngol. 2011 Dec; 12(6):671-6. Shera CA, Olson ES, Guinan JJ. PMID: 21947765; PMCID: PMC3214245.
      View in: PubMed   Mentions: 2     Fields:    Translation:Animals
    78. Distortion products and backward-traveling waves in nonlinear active models of the cochlea. J Acoust Soc Am. 2011 May; 129(5):3141-52. Sisto R, Moleti A, Botti T, Bertaccini D, Shera CA. PMID: 21568417; PMCID: PMC3324258.
      View in: PubMed   Mentions: 8     Fields:    Translation:Humans
    79. Forward- and Reverse-Traveling Waves in DP Phenomenology: Does Inverted Direction of Wave Propagation Occur in Classical Models? AIP Conf Proc. 2011; 1403. Sisto R, Shera CA, Moleti A, Botti T. PMID: 24376285; PMCID: PMC3873145.
      View in: PubMed   Mentions: 1  
    80. Otoacoustic Estimates of Cochlear Tuning: Testing Predictions in Macaque. AIP Conf Proc. 2011; 1403:286-292. Shera CA, Bergevin C, Kalluri R, Laughlin MM, Michelet P, van der Heijden M, Joris PX. PMID: 24701000; PMCID: PMC3971997.
      View in: PubMed   Mentions: 4  
    81. Auditory sensitivity may require dynamically unstable spike generators: evidence from a model of electrical stimulation. J Acoust Soc Am. 2010 Nov; 128(5):EL300-5. O'Gorman DE, Colburn HS, Shera CA. PMID: 21110542; PMCID: PMC2997813.
      View in: PubMed   Mentions: 2     Fields:    Translation:HumansCellsPHPublic Health
    82. Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol. 2010 Sep; 11(3):343-65. Shera CA, Guinan JJ, Oxenham AJ. PMID: 20440634; PMCID: PMC2914235.
      View in: PubMed   Mentions: 116     Fields:    Translation:HumansAnimals
    83. Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards. J Acoust Soc Am. 2010 Apr; 127(4):2398-409. Bergevin C, Shera CA. PMID: 20370023; PMCID: PMC2865438.
      View in: PubMed   Mentions: 15     Fields:    Translation:AnimalsCells
    84. Posture systematically alters ear-canal reflectance and DPOAE properties. Hear Res. 2010 May; 263(1-2):43-51. Voss SE, Adegoke MF, Horton NJ, Sheth KN, Rosand J, Shera CA. PMID: 20227475; PMCID: PMC3179977.
      View in: PubMed   Mentions: 12     Fields:    Translation:Humans
    85. Dynamical instability determines the effect of ongoing noise on neural firing. J Assoc Res Otolaryngol. 2009 Jun; 10(2):251-67. O'Gorman DE, White JA, Shera CA. PMID: 19308644; PMCID: PMC2674196.
      View in: PubMed   Mentions: 5     Fields:    
    86. Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions. J Acoust Soc Am. 2008 Jul; 124(1):381-95. Shera CA, Tubis A, Talmadge CL. PMID: 18646984; PMCID: PMC2677332.
      View in: PubMed   Mentions: 31     Fields:    Translation:Animals
    87. Otoacoustic emissions in humans, birds, lizards, and frogs: evidence for multiple generation mechanisms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Jul; 194(7):665-83. Bergevin C, Freeman DM, Saunders JC, Shera CA. PMID: 18500528; PMCID: PMC2562659.
      View in: PubMed   Mentions: 24     Fields:    Translation:HumansAnimals
    88. Cochlear reflectivity in transmission-line models and otoacoustic emission characteristic time delays. J Acoust Soc Am. 2007 Dec; 122(6):3554-61. Sisto R, Moleti A, Shera CA. PMID: 18247763.
      View in: PubMed   Mentions: 14     Fields:    Translation:Humans
    89. Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am. 2007 Dec; 122(6):3562-75. Kalluri R, Shera CA. PMID: 18247764.
      View in: PubMed   Mentions: 39     Fields:    Translation:Humans
    90. Laser amplification with a twist: traveling-wave propagation and gain functions from throughout the cochlea. J Acoust Soc Am. 2007 Nov; 122(5):2738-58. Shera CA. PMID: 18189566.
      View in: PubMed   Mentions: 55     Fields:    Translation:Animals
    91. Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am. 2007 Apr; 121(4):2097-110. Kalluri R, Shera CA. PMID: 17471725.
      View in: PubMed   Mentions: 46     Fields:    Translation:Humans
    92. Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions. J Acoust Soc Am. 2007 Mar; 121(3):1564-75. Shera CA, Tubis A, Talmadge CL, de Boer E, Fahey PF, Guinan JJ. PMID: 17407894.
      View in: PubMed   Mentions: 15     Fields:    Translation:Humans
    93. Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources. J Acoust Soc Am. 2007 Feb; 121(2):1003-16. Shera CA, Guinan JJ. PMID: 17348523.
      View in: PubMed   Mentions: 17     Fields:    Translation:Animals
    94. Wave propagation patterns in a "classical" three-dimensional model of the cochlea. J Acoust Soc Am. 2007 Jan; 121(1):352-62. de Boer E, Nuttall AL, Shera CA. PMID: 17297790.
      View in: PubMed   Mentions: 13     Fields:    Translation:Animals
    95. Posture-induced changes in distortion-product otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure. Neurocrit Care. 2006; 4(3):251-7. Voss SE, Horton NJ, Tabucchi TH, Folowosele FO, Shera CA. PMID: 16757834.
      View in: PubMed   Mentions: 20     Fields:    Translation:Humans
    96. Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions. J Acoust Soc Am. 2005 Jul; 118(1):287-313. Shera CA, Tubis A, Talmadge CL. PMID: 16119350.
      View in: PubMed   Mentions: 38     Fields:    Translation:Humans
    97. Do forward- and backward-traveling waves occur within the cochlea? Countering the critique of Nobili et al. J Assoc Res Otolaryngol. 2004 Dec; 5(4):349-59. Shera CA, Tubis A, Talmadge CL. PMID: 15675000; PMCID: PMC2504571.
      View in: PubMed   Mentions: 11     Fields:    Translation:HumansAnimals
    98. Simultaneous measurement of middle-ear input impedance and forward/reverse transmission in cat. J Acoust Soc Am. 2004 Oct; 116(4 Pt 1):2187-98. Voss SE, Shera CA. PMID: 15532651.
      View in: PubMed   Mentions: 15     Fields:    Translation:Animals
    99. Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Ear Hear. 2004 Apr; 25(2):86-97. Shera CA. PMID: 15064654.
      View in: PubMed   Mentions: 36     Fields:    Translation:HumansAnimals
    100. The origin of SFOAE microstructure in the guinea pig. Hear Res. 2003 Sep; 183(1-2):7-17. Goodman SS, Withnell RH, Shera CA. PMID: 13679133.
      View in: PubMed   Mentions: 20     Fields:    Translation:Animals
    101. Estimates of human cochlear tuning at low levels using forward and simultaneous masking. J Assoc Res Otolaryngol. 2003 Dec; 4(4):541-54. Oxenham AJ, Shera CA. PMID: 14716510; PMCID: PMC3202745.
      View in: PubMed   Mentions: 84     Fields:    Translation:Humans
    102. Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am. 2003 Jul; 114(1):244-62. Shera CA. PMID: 12880039.
      View in: PubMed   Mentions: 68     Fields:    Translation:HumansAnimals
    103. Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am. 2003 May; 113(5):2762-72. Shera CA, Guinan JJ. PMID: 12765394.
      View in: PubMed   Mentions: 90     Fields:    Translation:Animals
    104. Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci U S A. 2002 Mar 05; 99(5):3318-23. Shera CA, Guinan JJ, Oxenham AJ. PMID: 11867706; PMCID: PMC122516.
      View in: PubMed   Mentions: 203     Fields:    Translation:HumansAnimals
    105. Small tumor virus genomes are integrated near nuclear matrix attachment regions in transformed cells. J Virol. 2001 Dec; 75(24):12339-46. Shera KA, Shera CA, McDougall JK. PMID: 11711624; PMCID: PMC116130.
      View in: PubMed   Mentions: 13     Fields:    Translation:HumansCells
    106. Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. J Acoust Soc Am. 2001 Jul; 110(1):332-48. Shera CA. PMID: 11508959.
      View in: PubMed   Mentions: 32     Fields:    Translation:HumansAnimalsCells
    107. Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion. J Acoust Soc Am. 2001 May; 109(5 Pt 1):2023-34. Shera CA. PMID: 11386555.
      View in: PubMed   Mentions: 26     Fields:    Translation:Animals
    108. Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. J Acoust Soc Am. 2001 Feb; 109(2):622-37. Kalluri R, Shera CA. PMID: 11248969.
      View in: PubMed   Mentions: 72     Fields:    Translation:Humans
    109. Interrelations among distortion-product phase-gradient delays: their connection to scaling symmetry and its breaking. J Acoust Soc Am. 2000 Dec; 108(6):2933-48. Shera CA, Talmadge CL, Tubis A. PMID: 11144585.
      View in: PubMed   Mentions: 30     Fields:    Translation:Animals
    110. Middle ear pathology can affect the ear-canal sound pressure generated by audiologic earphones. Ear Hear. 2000 Aug; 21(4):265-74. Voss SE, Rosowski JJ, Merchant SN, Thornton AR, Shera CA, Peake WT. PMID: 10981602.
      View in: PubMed   Mentions: 8     Fields:    Translation:Humans
    111. Acoustic mechanisms that determine the ear-canal sound pressures generated by earphones. J Acoust Soc Am. 2000 Mar; 107(3):1548-65. Voss SE, Rosowski JJ, Shera CA, Peake WT. PMID: 10738809.
      View in: PubMed   Mentions: 8     Fields:    Translation:Humans
    112. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am. 1999 Feb; 105(2 Pt 1):782-98. Shera CA, Guinan JJ. PMID: 9972564.
      View in: PubMed   Mentions: 246     Fields:    Translation:HumansAnimals
    113. The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am. 1995 Oct; 98(4):2018-47. Zweig G, Shera CA. PMID: 7593924.
      View in: PubMed   Mentions: 126     Fields:    Translation:HumansAnimals
    114. Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am. 1993 Jun; 93(6):3333-52. Shera CA, Zweig G. PMID: 8326061.
      View in: PubMed   Mentions: 27     Fields:    Translation:Humans
    115. Middle-ear phenomenology: the view from the three windows. J Acoust Soc Am. 1992 Sep; 92(3):1356-70. Shera CA, Zweig G. PMID: 1401522.
      View in: PubMed   Mentions: 12     Fields:    Translation:HumansAnimals
    116. An empirical bound on the compressibility of the cochlea. J Acoust Soc Am. 1992 Sep; 92(3):1382-8. Shera CA, Zweig G. PMID: 1401524.
      View in: PubMed   Mentions: 8     Fields:    Translation:HumansAnimals
    117. Analyzing reverse middle-ear transmission: noninvasive Gedankenexperiments. J Acoust Soc Am. 1992 Sep; 92(3):1371-81. Shera CA, Zweig G. PMID: 1401523.
      View in: PubMed   Mentions: 8     Fields:    Translation:Humans
    118. Phenomenological characterization of eardrum transduction. J Acoust Soc Am. 1991 Jul; 90(1):253-62. Shera CA, Zweig G. PMID: 1880296.
      View in: PubMed   Mentions: 7     Fields:    Translation:HumansAnimals
    119. A symmetry suppresses the cochlear catastrophe. J Acoust Soc Am. 1991 Mar; 89(3):1276-89. Shera CA, Zweig G. PMID: 2030215.
      View in: PubMed   Mentions: 17     Fields:    Translation:Animals
    120. Reflection of retrograde waves within the cochlea and at the stapes. J Acoust Soc Am. 1991 Mar; 89(3):1290-305. Shera CA, Zweig G. PMID: 2030216.
      View in: PubMed   Mentions: 16     Fields:    Translation:Animals
    Christopher's Networks
    Concepts (177)
    Derived automatically from this person's publications.
    _
    Co-Authors (9)
    People in Profiles who have published with this person.
    _
    Similar People (60)
    People who share similar concepts with this person.
    _
    Same Department
    Search Department
    _